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in structure 11. These chemical data are in full agreement with 
structure 1 for nocardicin A. 

The absolute configuration of the acylamino group on the 
/3-lactam ring and the carboxyl group of the p-hydroxyphen-
ylglycine moiety were established to be L and D, respectively, 
from optical data of 13, [a]D +20.3° (1 N HCl),8 and 14, [a]D 
-80.0° (0.1 NHCl) (54% optical purity).9 With regard to the 
stereochemistry of the remaining homoserine unit, the benzoic 
acid derivative 15, obtained by treatment of 10 with H2O2, was 
hydrogenated over Pt in 3 N HCl to generate D-a-amino-
butyrolactone (HCl salt), [a] D +29.0 (0.1 N HCl);10 the 
absolute configuration of the homoserine part is thus D. 

The oxime configuration was established to be syn to the 
acylamino group on the following grounds. Nocardicin B (2), 
C23H24O9N4, mp 262-264° dec, [a]D -162.0°(H2O),3 iso­
lated as a minor product from the same culture, was shown to 
be a stereoisomer of 1 at the oxime function; on treatment with 
NaHSO3, 2 was also converted to the keto derivative 6. The 
1H NMR spectrum of 1 (Me2SO-^) shows the amide proton 
at 9.12 ppm (as described above), while in 2 it is at 8.81 ppm 
(d, J = 8 Hz). This difference in the chemical shift of the amide 
protons suggests the presence of an internal hydrogen bonding 
between the oxime O and amide H in 1. This is possible only 
when the oxime OH is syn to the amide group.11'12 

The structures of nocardicin A and B are hence established 
as being 1 and 2, respectively. Nocardicin A is active against 
a variety of gram-negative bacteria and shows an especially 
high antimicrobial activity against Pseudomonas, while the 
activity of nocardicin B is weaker.13 These antibiotics are 
unique in several respects: (1) they are the first examples of 
monocyclic /3-lactam antibiotics14 possessing relatively high 
potency; (2) they have an oxime function15 whose syn relation 
to the acylamino group is favored for antimicrobial activity; 
(3) they contain />-hydroxyphenylglycine (two such units) 
which is found rarely in nature;16 (4) their structures are 
stereochemically related to the penicillin molecule (carboxyl, 
a; acylamino, /3); and (5) similarly to penicillins and ce­
phalosporins, they are enzyme inhibitors in the cell wall bio­
synthesis of bacteria.17 

Chemical modification of nocardicins and preparation of 
new 3-acyl derivatives of 3-aminonocardicinic acid (3-ANA) 
1618 are in progress. 
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Spectinomycin Biosynthesis Studied by Carbon Magnetic 
Resonance Spectroscopy1 

Sir: 

We have recently reported2 that the biosynthesis of deox-
ystreptamine, the aminocyclitol moiety of neomycin, pro­
ceeds from glucose by a pathway in which [6-13C]D-glucose 
labels C-2 of deoxystreptamine and [l-13C]D-glucosamine3 

labels C-I of deoxystreptamine (Figure 1, path b).4 More 
recently we showed that [6-13C]D-glucose labels C-6 of 
streptidine, the substituted aminocyclitol moiety of strep­
tomycin,"3 which would agree with earlier reports that [1-
14C]D-glucose labels C-5 of streptidine.5 

Thus, the two aminocyclitols deoxystreptamine and 
streptidine are biosynthesized by different pathways. A 
third aminocyclitol antibiotic,6 spectinomycin (Figure 2),7-8 

which is used clinically in the treatment of gonorrhea, con­
tains a different aminocyclitol unit, actinamine, with simi­
larities to both deoxystreptamine and streptidine. Actinam­
ine does not contain the highly basic guanido groups of 
streptidine, but, unlike deoxystreptamine, it contains a hy-
droxyl group at C-2. A priori, then, either (or neither) of 
the two biosynthetic pathways might be followed. 

No report exists of the precise location of label in the am-
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STRE PTIDI NE' 
R--C)-NH)NH 2 

Figure 1. Location of labeled carbons in deoxystreptamine and strepti-
dine from C-I (*) and C-6 (# ) labeled D-glucose or D-glucosamine.3 

ACTINAMINE 

ACTINOSPECTOSE 

SPECTINOMYCIN 
HYDRATE 

Figure 2. Structure of spectinomycin and carbons labeled (arrows) by 
[6-13C] D-glucose. 

Table I. Distribution of Label within Spectinomycin 
from [6-l3C]D-Glucose 

Atom 

C-I 
C-2 
C-3 
C-4 
C-5 
C-6 
1-N-CH3 

3-N-CH3 
C-I' 
C-2' 
C-3' 
C-4' 
C-5' 
C-6' 

6, ppm" 

62.5 
60.7 
59.5 
66.5 
70.7 
66.9 
31.8 
31.3 
94.4 
94.4 
92.6 
42.3 
69.2 
20.5 

Enrichment* 

0.84 
0.92 
0.88 
1.28 
1.06 
3.14 
1.67 
1.66 
1.00c 

1.00' 
1.00 
0.87 
0.96 
3.40 

" Measured in deuterium oxide at pD 4.6, with dioxane as inter­
nal reference (Sdioxanc 67.4 ppm downfield from Me4Si). * Calcu­
lated by comparing peak ratios in spectrum of labeled spectinomy­
cin to those in spectrum of unenriched compounds, using 94.4 ppm 
as standard.c By definition. 

inocyclitol unit of spectinomycin from specifically labeled 
glucose, although Mitscher et al.9 noted that [6-3H] D-glu­
cose was incorporated into both subunits of spectinomycin 
and suggested a biosynthetic pathway which would appar­
ently require C-6 of glucose to label C-I and/or C-3 of acti-
namine. Glucose C-6 labeled actinospectose at C-6' (the C-
methyl group).9 The incorporation of myoinositol into acti-
namine9 would argue tentatively for the streptidine path­
way (path a), since wyo-inositol is well incorporated into 
streptidine10 but not into deoxystreptamine.11 

In the present study, 1.75 g of [6-13C]D-glucose2 (63% 
13C) was administered in three increments at 12-h intervals 
beginning after 72 h growth to a growing culture of Strep-
tomyces spectabilis in a fermentation medium based on 
that described previously. 12a'b The fermentation was halted 
after 6 days. Spectinomycin (487 mg) was isolated, 12a'c pu­
rified by extraction with methanol, and recrystallized from 
aqueous acetone. The incorporation of carbon-13 was 2.4% 
and the dilution was 1:6.4. 

Examination of the carbon magnetic resonance spec­
trum13 of the labeled spectinomycin at pH 4.6 (Table I) in­
dicated that two atoms (C-6 of actinamine and C-6' of acti­
nospectose) were labeled to the extent of approximately 3.3 
times natural abundance and the two TV-methyl groups to 
the extent of about 1.7 times natural abundance. Methio­
nine has been shown9 to be the source of the TV-methyl 
groups of actinamine. Labeling of the TV-methyl groups by 
C-6 of glucose presumably follows the accepted (abbreviat­
ed) conversions16 [6-13C]glucose -* 3-phospho[3-13C]gly-
ceric acid -*• [3-13C]serine -* [methylene-13C]tetrahydro-
folic acid —• [methyl-13C]methionine. 

Labeling of C-6' of actinospectose by [6-13C]glucose 
argues for the direct conversion of glucose to this neutral 
fragment and confirms the earlier report.9 More important­
ly, the present demonstration that the label from [6-
13C] glucose is found at C-6 of actinamine argues for a bio­
synthetic pathway to actinamine related to that for strepti­
dine rather than that for deoxystreptamine. Thus, guani-
dinylation of an amino group is not a prerequisite for path a 
of Figure 1. 
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Electrochemical Reduction and Bonding in the O2, S2 , 
and Se2 Adducts of [ITIiC6Hs)2PCH2CH2P(C6Hs)2]I)+ 

Sir: 

We wish to report here novel electrochemical behavior and 
its bonding implications for the series [Ir(dppe)2X2] + (dppe 
= Ph2PCH2CH2PPh2 ; X2 = O2, S2, and Se2).1"4 This study 
reveals for the first time the dissociation of X 2 - - consequent 
to the addition of one electron to the antibonding orbital of the 
x-component of the widely accepted Dewar-Chatt-Duncanson 
model5 for MX2 bonding; it also provides a means of assessing 
the 7r-back-bonding interaction between the metal and the X2 

group. 
Cyclic voltammograms (100 mV/s) of degassed 1O -3 M 

solutions of [Ir(dppe)2X2]+ and [Ir(dppe)2] + in CH3CN 
(using 0.1 M («-C4H9)4N+ClC>4_ as supporting electrolyte, 
Ag/0.01 M AgNO 3 as reference electrode and a hanging 
mercury drop as working electrode) are shown in Figure 1. 
Ir(dppe)2

+ has one quasi-reversible reduction wave at —2.05 
V. The O2, S2, and Se2 adducts each have two reduction waves: 
the first wave (A) is irreversible and progresses to more neg­
ative potential, viz., —1.64, —1.75, and —1.95 V, along the 
sequence Se2, S2, O 2 whereas the second wave (B) is quasi-
reversible with potential (—2.05 V) and shape resembling that 
of the Ir(dppe)2

+ species. At slow scan rates (10 mV/s) the 
cyclic voltammogram of Ir(dppe)2

+ has no anodic peak. In the 
100 mV/s scan /P

c / /P
a * 2 and the peak separation is 45 mV, 

while in a 200 mV/s scan /P
c / 'p

a ** 1.5 and the peak separation 
is 52 mV. A one-electron reversible charge transfer has i'p

c/!'P
a 

= 1 and a peak separation of 59 mV. 
To clarify the nature of the reduction waves, we carried out 

extensive controlled potential coulometry studies on these 
complexes. Except for the S2 adduct, wave A corresponds to 
a one (0.9-1.1) electron reduction whereas wave B corresponds 
to a 1.7-1.8 electron reduction. The coulometric n values for 
Ir(dppe)2S2

+ are 1.3 and 0.4 for waves A and B, respectively. 
We also observed that controlled potential electrolysis at po­
tentials intermediate between waves A and B of Ir(dppe)2X2

+ 

produced a solution with color and cyclic voltammogram 
characteristic of Ir(dppe)2

+. In the case of the O2 complex, the 
cyclic voltammogram of this solution also showed an oxidation 
wave at —1.03 V, analogous to the wave found in a freshly 
prepared solution of authentic O 2 - - . In all cases, further re­
duction at a potential more negative than wave B (i.e., —2.05 
V) produced an orange precipitate identical with that obtained 

- 0 . 8 -VO -1,2 •1,4 -1.6 -1.8 2 .0 

POTENTIAL(VOLTS) 

(VS 0,01 M AgZAgNO3) 

Figure 1. Cyclic voltammograms of 10 3 M [Ir(dppeh]+ and 
[Ir(dppe)2X2]

 + (X2 = O2, S2, and Se2) in 0.10 M (/!-C4H^4N
+ClO4-

in CH3CN: scan rate, 100 mV/s; scan initiated at arrowhead. The sharp 
reduction peak at —1.65 V on the reverse (anodic) scan for the S2 adduct 
disappears when a Pt-bead is used as the working electrode, or when the 
scan rate is greater than 500 mV/s with a hanging mercury drop electrode. 
Its origin is at present not understood. 

by similar reduction of the Ir(dppe)2
+ species. The orange 

precipitate was characterized by elemental analysis-
(Ir(dppe)2H), 1H NMR in CDCl3 (a 1:4:6:4:1 quintet at r 
30.04 with / P _ H = 12 Hz), and ir (a sharp I r -H stretching 
mode at 2015 cm - 1 ) - A single-crystal x-ray structure deter­
mination6 revealed a trigonal-bipyramidal-like structure (I) 
with the hydride (not located) presumably situated at the axial 
position.7 

To trace the source of the hydride, controlled-potential 
coulometry was repeated using CD3CN as solvent. The orange 
precipitate now showed a loss of about 80% in the intensity of 
its I r -H stretching band at 2015 cm - 1 , and a new band ap­
peared at 1445 cm - 1 , as expected for the I r -D stretch. This 
suggests that about 80% of the hydride comes from the solvent, 
with the remaining 20% most likely from the ortho-phenyl 
hydrogen of the dppe ligand or the supporting electrolyte.9 
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